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Abstract

Predicting cognitive decline using simple to obtain data has a large application in ageing
populations, and the earlier a disease is diagnosed, the more effective treatments are. In
this project I apply Generalized Matrix Learning Vector Quantization (GMLVQ) classifi-
cation on a dataset from ADNI, which includes cognitive data (MMSE), structural MRI
scans and working memory slope scores collected over 8 years. I aim to classify between
healthy and MCI patients, and then within the MCI class between converters to AD and
non-converters. A Privileged Information Theoretic Metric Learning approach is taken to
attempt to improve the classification accuracy of the cognitive data using the structural
data as a privileged feature space. This approach has a potential clinical application as,
if the classification accuracy of the widely administered MMSE could be improved upon,
it could help to flag up early cognitive decline using a cheap and non-invasive method.
Voxel Based Morphometry (VBM) and Partial Least Squares (PLS) regression is used to
extract features from the structural MRI scans in the gray and white matter which are
predictive of (future) diagnosis. My results show that the Privileged Information approach
was unsuccessful at boosting the MMSE score for predicting conversion to AD within a
clinically diagnosed MCI population, which is evidence showing the MMSE to be a poor
predictive metric. However the gray and white matter did a good job at differentiat-
ing between converters and non-converters, achieving 67.2% mean classification accuracy
compared to just 52.3% by the cognitive data. I pull out these structural features and
the relationships between them in the classifier. Finally I assert based on these findings
that more longitudinal studies allowing for prediction within healthy populations, namely
converters vs non-converters would be an advancement in this field.
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1 Introduction

In 2017, Alzheimer’s Disease (AD) in the United States of America was estimated to be the
most expensive disease of any kind, costing $259 billion per year [1]. One in three people
born in 2015 will likely develop the disease [2]. The symptoms are short-term memory loss,
loss of language, orientation and self-care abilities, with a life expectancy from diagnosis of
3-9 years [3]. AD is a multifactoral disease which results from environmental and genetic
factors. Mild Cognitive Impairment (MCI) can bee seen as a stage prior to AD, with a
measurable but not significant decline in memory or cognition [4].

While clinical diagnosis and treatment are discrete objectives, they are linked in that
our understanding of the multiple causes of AD is still an active and unresolved field,
with treatments available which delay the onset of disease rather than cure it. There
is a strong emphasis in this field for prediction of cognitive decline since the earlier a
diagnosis, the more effective treatments are, and can prolong healthy function for many
years [5]. Hence this project is motivated by seeking to predict the onset of cognitive
decline by building models which can also be interpreted from a neuroscientific perspective.
Predictive modeling using machine learning and big data has become a large and promising
field in recent years. However, many models have focused on prediction of clinical diagnosis
with the highest possible classification accuracy, often in small samples where over-fitting
has meant the models have failed to generalise successfully to other samples.

This project aims to solve some of these issues by
e using a large data set from ADNI [6], collected by multiple scanners

e incorporating longitudinal data by comparing people who convert to Alzheimer’s
Disease and those whose diagnosis does not change over time

e attempting to move away from simply predicting clinical diagnoses which are unre-
liable and have been redefined twice since the ADNI data collection began, in 2011
and again in 2018 [7]

e using partial least squares regression to build interpretable, and not over-fit feature
spaces

e seeking a potential clinical application by attempting boost predictive accuracy and
sensitivity of less invasive feature spaces such as cognitive tests and structural data,
by using a highly predictive feature space available from the ADNI database.

I build upon the work of Alahamadi [8] by attempting to boost the predictive accuracy of a
simple cognitive test - the MMSE [9] - by incorporating a privileged information theoretic
metric learning approach. If successful, this makes mass-scale individual cognitive health
risk prediction more viable from a cost and resource perspective. The initial goal of this
project was to explore the viability of classifying between healthy and MCI groups using
the baseline structural MRI scans, mirroring the work of Alahamadi who did the same
with functional MRI data.



Machine Learning Tools for Predicting Cognitive Health Part IIT Project

Based on the initial results and the available data, the task lent itself naturally to con-
sidering AD converters vs non-converters with the same baseline MCI diagnosis, where
the same methods were applied. This is more useful as one can classify risk profiles of
future cognitive decline from within a pre-Alzheimer’s population, based on structural
differences which are present pre-diagnosis. I provide evidence that classifying patients
with a converter/non-converter framework is far more useful than relying on a clinical
diagnosis, backing up work done by Ritter et al. [10]. In addition, I attempt to ex-
tract structural features within the brain which are predictive of an individual’s risk of
developing Alzheimer’s Disease.

2 Literature Review

Much of the motivation for this project comes from a recent review in Nature Neuroscience
[11], which summarises the work done in translational neuroscience, and the potential
future direction of the field. The review highlights the need for models with “neuroscien-
tific validity” and simplicity, which in machine learning terms relates to an interpretable
feature space, and suitable mathematical models which make sense in terms of existing
neurobiological and clinical knowledge.

Many studies have shown that it is possible to achieve excellent classification between
healthy controls and patients with AD, however this is no longer an informative or useful
task. Prediction within healthy /MCI patients is required to achieve an early diagnosis,
and hence administer effective treatment. This is lacking in the literature and requires
more interpretation than a computer science classification task to have clinical application.
Alahamadi [8] used fMRI to classify between healthy and MCI patients, however the study
had a small sample with significant class imbalance (only 9 MCI, 27 healthy controls).
The study incorporated privileged information to boost the classification accuracy between
control and MCT of a cognitive test from 61.5% to 68.3%, however this was not a commonly
applied clinical cognitive test such as the MMSE, which if successfully improved would
have a widespread clinical application.

One issue is that any method achieving a very high classification accuracy of clinical diag-
nosis (say over 90%), for example using a Deep Learning Convolutional Neural Network
approach [12], is almost certainly over-fit since the clinical diagnoses they are based off
are unreliable. AD can be misdiagnosed as Parkinson’s or cerebrovascular disease [13].
Additionally, MCI is diagnosed using a heavy weighting on a patient’s memory complaints
and MMSE score, which can vary day-to-day or be affected by other conditions such as
depression or anxiety, hence is a poor metric for differentiating between MCI and healthy
controls [14]. MCI has been shown to be susceptible to false-positive, and potentially
false negative diagnoses [15]. Hence, care must be taken when building predictive models
which aim to classify class labels from a clinical diagnosis.

Another trend in the field is to employ deep neural networks, especially on the structural
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image data that is used in this project, such as the work done by Lu et al. [16]. While
promising, these studies admit that the features found by the deep neural network are
difficult or impossible to interpret. Comparable results using a SVM approach with a
much more interpretable feature space - ‘eigenbrains’ generated by Principal Component
Analysis (PCA) [17] have been achieved. Partial Least Squares Regression (PLS) has
been shown to be more even more effective at extracting discriminating information from
structural MRI data [18], generating similar eigenbrains. This approach allows for the
validation of the feature extraction method by comparing the areas of interest that are
extracted with known regions of the brain associated with matter atrophy in cognitive
decline, such as the medial temporal lobe [19] and the hippocampus [20]. In addition it
may find other significant areas which may signal the onset of decline.

The analysis of longitudinal data (maintenance vs decline) can give insight into the issues
of clinical misdiagnoses, and also help move away from it. The dataset in this project
lends itself well to a multivariate diagnostic classification task, such as attempted with
SPARE-AD model developed by Davatzikos et al. [21]. However this is a fairly speculative
model which cannot be tested in a GLMVQ classifier framework. Recent work successfully
groups MCI to AD converters, for example Cabral et al. 2015 [22]. It is clear that a large
data set, with extensive longitudinal patient tracking will be needed, as very few models
have been successfully validated out-of-sample [11].

3 Theory

3.1 Feature Generation
3.1.1 Partial Least Squares Regression

Partial Least Squares (PLS) regression [23] [24] is a linear regression technique used for
the prediction of one variable from another by finding a multivariate relationship between
their two matrices X (brain) and Y (behaviour). The model seeks to find the orthogonal
latent variables - components - in the X-space which which show the maximum covariance
in the Y-space. PLS has been successfully applied in neuroimaging [25] as it is well suited
to data with a larger number of predictors than observations, which is the case with the
X and Y matrices used in this project. They are defined as:

v] 1
T
X=1. Y =
vy Cn

Where v; are the condensed gray or white matter voxel intensity column vectors for each
subject i, and ¢; are binary values representing the class of each subject, usually their
clinical diagnosis. There are n subjects in the sample.
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PLS regression will find the X-score (or component) matrix T which are projections of
X, and can also be used to predict Y.

X = TP’ (1)
Y = TBCT (2)

Plus associated error terms. P and C are the weights (or loadings) matrices, and Y is the
predicted Y matrix. Refer to Krishnan et al. [25] for more details, and to the appendix
for the implementation in this project. The PLS can find multiple orthogonal components
in X which explain the variance in Y - where the number of components ¢ chosen to be
used in the model is a hyperparameter to be optimised.

It is the X weights that are of interest, as they form a vector mask which can be multiplied
by test data X to construct a scalar score sgi for each component ¢ for each subject 7,

for grey matter g and white matter w. These scores will be used as the feature space in
the GMLVQ classifier.

3.1.2 Cross-Validation and Bootstrapping

The statistical method of k-fold cross-validation is used in machine learning to test pre-
dictive models, and how they might generalise out of sample [26]. The data sample is
split randomly into k& sub-samples of equal size, with one of the k sub-samples taken as
the test data, and the other £ — 1 sub-samples as the training. The sub-samples contain
the same class sizes in the same proportion as the whole data sample.

The hyperparameters - the parameters fixed prior to any learning, for example the learning
rate - will be fixed by looping over many candidate permutations using cross-validation
within the £ = 1 training sub-fold. See Figure 1 for the specific implementation. This
process can become very computationally expensive, as it scales with O(n?), where n is
the time taken to run a classifier with sufficient iterations over the desired range for a
single hyperparameter, and p is the number of hyperparameters to be optimised in this
way, hence it is reasonable to optimise within the £ = 1 fold and fix for all other folds.
This approach also prevents overfitting.

Bootsrapping is a statistical method used to gain inference about a larger population
using the the data sample available [27]. This is achieved by multiple resamplings with
replacement, each yielding their own mean value, from which the variance of the resampled
mean can be calculated. This can be applied to other statistics or metrics other than the
mean. Here it will be used on the voxel values created from the PLS regression weights in
the mask-building process to variance-normalise each voxel, reducing the noise generated
by the PLS regression.



Machine Learning Tools for Predicting Cognitive Health Part IIT Project

The issue of class imbalance is addressed by down-sampling the majority class, to ensure
that balanced classes are always used in the analysis. This is appropriate for a large data
set with close to balanced classes, which is the case for the ADNI dataset.

3.2 Classification
3.2.1 Generalized Matrix Learning Vector Quantization

A Learning Vector Quantization (LVQ) [28] algorithm is a supervised learning classifier
which assigns L prototype vectors w, € R™, ¢ = 1,2,..., L for each of the K different
classes ¢, = c¢(w,) € {1,..., K} in m dimensional feature space. The model trains using
a Hebbian online (sequential), winner-takes-all learning scheme. The positions of the
prototypes are updated during the learning phase by moving the prototype closer to a
training point of the same class and further away from the closest training point of a
different class. The number of prototypes L is a free parameter to be optimised in the
model.

The Generalized Matrix Learning Vector Quantization (GMLVQ) [29] algorithm is LVQ
with a m x m positive definite matrix global metric tensor A (trace normalised) to gen-
eralise the distance measure between training point x; and prototype w: dy(x;, w) =
(x; — W)TA(x; — w). A = QTQ, where Q € R™*™ is a full-rank matrix [30]. A, which
can be the standard Euclidean metric, defines the parameters which are adapted during
training. Aw and AQ) are adapted, such that the distance from x; to w relies on A. The
particular details and implementation of this adaptation is detailed in Schneider [31].

In the training phase the algorithm seeks to minimise a cost function fearyg, where the
monotonic function ¢ is taken as the identity ¢(l) = I

famrvg = Z P(pa(x:)) (3)

There are n subjects in the data set, and the training data is (x;,y;) € R™,i=1,2,...,n,
for m dimensional feature space with y; representing one of the K different classes, ¢; =
c(x;) € {1,..., K}. The function u, is used to minimise the distance between points of
the same class, and maximise the distance between points of a different class:

dp(x;, Wwh) — dp(x;, W)
dp(xi, W) + dp (%, W)

(4)

pa(x;) =

da(x;, wT) is the distance from x; to the nearest prototype of the same class i.e. where
¢; = c¢(w) = y;, and likewise for w—, but for the closest prototype of different class label
c(w™) to y;.
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Using GMLVQ allows for the scaling of pairwise correlations between features, as well as
enabling the incorporation of the privileged information theoretic metric learning model.

3.2.2 Privileged Information Theoretic Metric Learning

The idea of privileged information learning [30] is that the GMLVQ classifier is applied in
a new privileged feature space X* yielding another metric tensor A*, in addition to A in
the original space X. This tensor in the privileged space X* is used to learn a new metric
Apew in X. The training points are now (x;,x5,y;) : x; € X,xF € X*,i =1,2,...,N. The
squared distances in the original and privileged spaces respectively are defined below:

da(xi,%5) = (% = %) TA(% = %5) , da= (35, %5) = (% = x5)TA(x; = x5) (5

In addition, the distance over the new metric A, is defined in the original space as:
Arpew (XiyX5) = (X — X5)TApew(X; — X;), where A,y is to be learned. By considering
a threshold percentage (as a hyperparameter to be optimised) of all pairwise squared
distances da-(x},x;), u* is defined as the upper bound for the squared distance between
a similar pair in the privileged space, and [* as the lower bound for the squared distance
between a dissimilar pair in the privileged space, the following construction is used to
label points as similar S, or dissimilar S_:

o If dy-(x},x}) < u” and the two points have the same class label c(z;) = c(z;) = y;
then (z;,z;) € S4.

o If dp-(x},x}) > " and the two points have a different class label c(z;) # c(;) # i
then (z;,z;) € S_.

Apew is optimised such that da,,, (X, ;) is shrunk if x7 and x} are similar, or enlarged
if not. This process is fully detailed in Fouad et al. 2013 [30]. The implementation is
detailed in the script privscript.m which was adapted from the library provided by Joseph
Giorgio.

4 Methods

The implementation of the methods can be found in the MATLAB code in the appendix.

4.1 Data

The data used came from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [6].
While the data was collected from different scanning sites, the protocol used to calibrate,
collect and process data was strict to ensure consistency in the sample [32]. The raw MRI
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scans are 50MB NIfTT (.nii) files, which are 3-D images composed of a few million voxels
(3-D pixels) each with a gray-scale intensity value. They come from 3T scanners with MP
RAGE sampling.

For this project only the baseline scans were used as structural data, with longitudinal
information available for each of the 600 subjects, for example the progression of their
clinical diagnoses and memory scores for the years after their initial baseline diagnosis.
This simplifies the task, but also proves useful as none of the subjects were diagnosed
AD at the time of scanning, hence focusing the framework for predicting decline from the
stage of cognitively healthy or MCI. Classifying AD from healthy patients using structural
data has been extensively and successfully attempted in the literature, and is not part
of this project. At each time point each patient has a diagnosis that is one of [Healthy
Control (HC), Early MCI (EMCI), Late MCI (LMCI), Alzheimer’s Disease (AD)]. For
baseline scans, the average age is 72.7 & 7.34 years. No baseline patients had AD, but
many converted over the 5-8 year time window the data was taken over.

Data to be incorporated into the first feature space is the simple to collect, cognitive
data, which is less highly predictive [33]: age, gender, MMSE, years of education. The
structural data is used to construct scores for gray sgi and white matter sy, from the first
q orthogonal PLS components, which forms an intermediate space - more predictive than
the cognitive data, but harder to obtain. Additionally, the change in working memory
scores are available as well as genetic and PET beta amyloid data, which are all highly
predictive metrics.

4.2 Voxel-Based Morphometry

The Method of Voxel-Based Morphometry (VBM) was used to process the structural MRI
scans. VBM is an analysis technique which allows for the comparison in brain anatomy
between different brains, by normalising each brain to MNI space (a ‘standard brain’ from
the Montreal Neurological Institute [34]). The VBM processing was performed in the
SPM12 software package [35], which runs in MATLAB. The VBM methodolgy template
outlined by Ashburner [36] was followed exactly to ensure consistency and to make sure
that the same processing can be carried out on other data sets. The script was written
and tested using scans from the IXI dataset [37] before being run over the ADNI scans.
The process is outlined in the following steps:

1. Pre-process images to ensure correct formatting and spatial orientation. Remove or
replace corrupted files.

2. Segment images into gray and white matter files. This is done by fitting suitable
intensity ranges to match the voxel intensity. For specific details refer to Ashburner

[36).

3. Use the Dartel package in SPM12 to find the nonlinear deformations to warp and
match the newly formed gray and white matter images.
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4. Normalise the images to MNI space. Generate smoothed warped gray and white
matter images. The smoothing process involves replacing the intensity of each voxel
by the average of the surrounding voxels. The smoothed images represent regional
tissue volumes for each brain. 3mm x 3mm x 3mm Gaussian FWHM smoothing
was chosen to reduce the variance across subjects and hence increase the sensitivity
to detect changes, without losing significant structural details.

The major advantage of VBM is its use in analysing a large data set. For small numbers
of scans, it has proven to be effective when compared to a radiologist’s visual assessment
[38], however for the large dataset VBM is the most appropriate method of data analysis
which allows for feature extraction from gray and white matter density.

4.3 Feature Generation
4.3.1 Creating Masked Vectors

Once the VBM processed gray and white matter images for each patient have been ob-
tained, the 3-D NIfTT files were converted into 1-D vectors. Since these vectors have over
2 x 10°% voxel intensity values, the areas not in the gray or white matter were set to zero
using a standard mask created in SPM12. All zero intensity values are then removed
resulting in a much smaller, condensed vector v; of around 1 x 10° voxels. This process is
reversible so the 3-D images can be reconstructed by placing the condensed vector values
in the non-zero mask positions, and reshaping back to 3-D.

The vector is condensed to reduce computational time and to prevent the PLS trying to
fit noise in areas that are not relevant.

4.3.2 Incorporating the PLS into the Cross-Validation

The PLS must be run within the training data of the k' crossfold only since it sees
the class label, so must be kept separate from the test data when building the weighted
mask. For each test subject, and for each component ¢, of gray matter and ¢, of white
matter, a scalar score is generated by multiplying the voxel intensity vectors by the mask
(weights P), and summing the values (dot product). The threshold cutoff of the mask was
optimised as a hyperparameter, and the fixed value resulted in each score being generated
by approximately 1000 voxel values, which corresponds to small, isolated regions which
could be viewed in 3-D using imaging software (see results for examples of these maps).

The PLS regression was applied using the inbuilt MATLAB function ‘plsregress’ [39)].

10
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Hyperparameter test data— 10% Multiply Mask by test data to

k® crossfold, of crossfold training data create score. Optimize
90% of sample hyperparameters by testing
Training Data scores in classifier

PLS Regression — n-
____p resamples, variance normalize

Create mask for each PLS

component

Initial training data — 90% of
crossfold training data

90 % Training: PLS Regression — nr resamples, variance normalize,
/ Create Mask, use hyperparameters optimized within training sample

Split Sample ————— 10% Test: Multiply mask by test brains to create scores for
each input PLS component

Repeat across all k crossfolds to generate scores for all subjects

Kkt crossfold, (with a mask generated only by training data for test crossfold
10% of sample
Test Data Test sample scores are run through GLMVQ classifier with n:

resamples to yield mean accuracy, sensitivity and specificity

Figure 1: Pipeline of k-crossfold validation method used for feature generation, hyperparameter
optimization and to test the GLMVQ classifier. Note, the hyperparameters were fixed in the
k =1 training sample.

4.4 Classification
4.4.1 Testing the GMLVQ Classifier and Fixing Hyperparameters

The PLS regression was run within each crossfold over 1000 resamples (bootsrapping).
It was checked that the components did not flip by comparing correlations, so the mean
values of the weights generated for each component ¢ could be taken and then variance
normalised to reduce noise.

Additionally, the percentage of variance in the Y-space explained by the PLS - PCTVAR
- was reconstructed in the test sample by multiplying the X scores by the test data,
correlating to the Y scores (class) and comparing to the PCTVAR in the training data.
While a correlation is not the most reliable means to test if a score will classify well, by
comparison with test/training correlations insight could be gained into how well the model
built using the training data would generalise to the test data. After this initial test phase,
it was concluded that no more than ¢ = 3 components would be needed in the PLS for
each of gray and white matter - higher components explained considerably less variance

11
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and more noise. The number to be used in the classifier was set in the optimisation phase
in the & = 1 crossfold - and was found to be ¢, = 1,2, 3 for gray matter and ¢, = 1 for
white matter.

The other hyperparameters fixed were the learning rate, the number of training epochs,
the threshold value of the mask (a trade-off between retaining information and removing
noise) and the number of prototypes L. See Figure 1 for the method pipeline.

Initially the classifier was tested with balanced classes by using cognitive data (MMSE,
age, education, sex) M-CD to differentiate between healthy controls (HC) and MCI (EMCI
and LMCI grouped). Then using the same classes, it was tested using the structural data
M-SD, with the hope that it would perform better.

M-SD for HC vs MCI performed worse than expected, so the subjects were reclassified as
MCI converters (to AD) MCI-C vs non-converters (stay MCI) MCI-S by looking at their
clinical diagnosis over the next 5-8 years (depending on the data available) from baseline.
This reduced the class sizes significantly, from 300 per class to 83, however it was a way to
incorporate the longitudinal data, and to tackle the single clinical mis-diagnosis problem.
The downside is that this method may have missed some converters, who would convert
to AD some time after final clinical diagnosis was collated.

All classification accuracy results stated were obtained by using a Macroaveraged Mean
Absolute Error, MMAE [8] method. It is a weighted sum of the classification errors across
classes. Classification accuracy = 1 minus the error. These numbers were obtained over
100 resamples of the data in the classifier, tested for all k crossfolds.

4.4.2 Incorporating The Privileged Information Theoretic Metric Learning

Once the classifier has been tested for different spaces and baseline classification accuracies
obtained, the features can be incorporated into the privileged ITML model. The hyper-
parameters were fixed in exactly the same way as before (outlined in Figure 1), but there
are a few additional hyperparameters - notably the slack parameter - to be optimised.

5 Results

The initial preliminary tests of the classifier were run with the classes HC vs MCI. However
I noticed that in some of the crossfolds the classifier was failing almost completely to
differentiate between the HC and MCI subjects, particularly those subjects who were
diagnosed EMCI and did not convert to LMCI or AD. Hence, it is more informative to
compare the HC subjects against MCI-C and MCI-S, as this data was available:

Sensitivity (true positive rate) is defined as (true positives)/(false negatives + true posi-
tives), for example a sensitivity of 1.000 would mean all people who converted to AD were
correctly identified. Specificity (true negative rate) is defined as (true negatives)/(false

12
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positives + true negatives), so a higher specificity would mean that more non-converters
were correctly classified.

5.1 HC vs MCI

Model Mean Acc Std-Dev  Sensitivity Specificity

M-CD 0.661 0.125 0.578 0.744
M-SD 0.753 0.108 0.742 0.764

Table 1: Classification performance table comparing mean classification accuracy (Mean Acc)
of the two classes Healthy Control (HC) and MCI-Converters (MCI-C) (convert to AD), using
different data. Balanced classes of size 100 HC and 100 MCI-C.

Model Mean Acc Std-Dev Sensitivity Specificity

M-CD 0.611 0.131 0.577 0.646
M-SD 0.584 0.144 0.532 0.635

Table 2: Classification performance table comparing mean classification accuracy (Mean Acc)
of the two classes Healthy Control (HC) and MCI-Stay (MCI-S), using different data. Balanced
classes of size 100 HC and 100 MCI-S.

It is notable from Table 1 and Table 2 how the structural data is far more informative
when it comes to differentiating between converters. The classifier struggles to differentiate
between those diagnosed as healthy and those who do not convert to AD within 5-8 years,

suggesting that there are likely a number of misdiagnosed people in these two classes,
which are probably much closer together than the HC/MCI-C/AD classes.

5.2 EMCI vs LMCI

Next, I tested using the newly defined converter classes, how the classifier performed
looking between EMCI and LMCI, converters vs non-converters:

Model Mean Acc Std-Dev Sensitivity Specificity

M-CD 0.605 0.134 0.600 0.610
M-SD 0.660 0.142 0.645 0.675

Table 3: Classification performance table comparing mean classification accuracy (Mean Acc) of
the two classes EMCI-Stay (EMCI-S) (non-converters) and EMCI-Converters (MCI-C) (convert
to AD), using different data. Balanced classes of size 50 EMCI-S and 50 EMCI-C.

13
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Model Mean Acc Std-Dev Sensitivity Specificity

M-CD 0.591 0.109 0.600 0.616
M-SD 0.684 0.126 0.734 0.634

Table 4: Classification performance table comparing mean classification accuracy (Mean Acc) of
the two classes LMCI-Stay (LMCI-S) (non-converters) and LMCI-Converters (MCI-C) (convert
to AD), using different data. Balanced classes of size 50 LMCI-S and 50 LMCI-C.

Model Mean Acc Std-Dev Sensitivity Specificity

M-CD 0.479 0.168 0.554 0.488
M-SD 0.507 0.147 0.500 0.486

Table 5: Classification performance table comparing mean classification accuracy (Mean Acc) of
the two classes EMCI-Stay (EMCI-S) and LMCI-Stay (LMCI-S), using different data. Balanced
classes of size 50 EMCI-S and 50 LMCI-S.

The results displayed in Tables 3-5 highlight how the classifier struggled separating EMCI
and LMCI, and it is much more informative to consider converters vs. stayers.

5.3 MCI-S vs MCI-C

The most important, useful, and best candidate for boosting using the privileged infor-
mation approach, was to consider MCI-S vs MCI-C. This section also includes images of
the structural features, and the A matrices.

Model ~ Mean Acc Std-Dev  Median Sensitivity —Specificity

M-CD 0.523 0.113 0.500 0.498 0.548
M-SD 0.672 0.131 0.688 0.727 0.617
M-MEM 0.763 0.103 0.781 0.744 0.781

Table 6: Classification performance table comparing mean classification accuracy (Mean Acc)
of the two classes MCI-Stay (MCI-S) (non-converters) and MCI-Converters (MCI-C) (convert to
AD), using different data. Balanced classes of size 83 MCI-S and 83 MCI-C. Figures 2-6 outline
these results in more detail, and show the structural features used in the M-SD classification.
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Figure 2: 3 plane slices of statistical map at the 95" percentile through the MNI brain for
gray matter component 1. Blue = negative loading with conversion to AD (atrophy), Red =
positive loading. Note the strong negative loading in the temporal lobes, a well known atrophic
region associated with the onset of AD.

Figure 3: 3 plane slices of statistical map at the 95" percentile through the MNI brain for
gray matter component 2. Blue = negative loading with conversion to AD (atrophy), Red =
positive loading. Note positive loadings in the visual cortex and brain stem, as well as the left
dorsolateral prefrontal cortex. Negative loadings are seen in the temporal lobes as with the first
component.
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Figure 4: 3 plane slices of statistical map at the 95" percentile through the MNI brain for
gray matter component 3. Blue = negative loading with conversion to AD (atrophy), Red =
positive loading. Note the strong loading in the visual cortex.

0.6

1| 01673 0.07187 0.3248 0.1632
05
2 0.07187 0.03753 0.1449 0.07257 0.4
10.3

3| 03248 0.1449 0.3189
10.2
4] 01632 0.07257 0.3189 0.1602 o

1 2 3 4

Figure 5: A matrix showing cross-terms for features 1 = first component of white matter, 2,3,4
= first, second and third components of gray matter respectively for MCI-S vs MCI-C. The
heaviest weighting is on component 2 in the gray matter
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Figure 6: A matrix showing cross-terms for features 1 = Age, 2 = MMSE, 3 = Sex, 4 = Years of
Education. Very heavily weighted on the MMSE, however the classifier still struggled to identify
AD converters using this data.

5.4 MCI-S vs MCI-C - Using Privileged Information Theoretic
Metric Learning
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Figure 7: A,en matrix showing cross-terms for features 1 = Age, 2 = MMSE, 3 = Sex, 4 =
Years of Education. There has been a slight pull on the MMSE /Education interaction, however
the A matrix has been largely unchanged by the structural data as privileged information.
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After some time spend fixing hyperparameters, using the structural data as privileged
information the PITML classifier was unable to improve the baseline classification of
M-CD which was 0.523.

6 Discussion

It is interesting to note that when EMCI and LMCI were grouped into MCI, there cognitive
data did considerably worse at differentiating between converters and non-converters. This
is actually unsurprising because the MMSE does a better job at differentiating between
EMCI and LMCI than the converters - mainly because the diagnosis of EMCI or LMCI
was based heavily off this single score.

While this project was unsuccessful in using the privileged information, it is not a sur-
prising result. The MMSE has been shown in the literature to be a poor predictor of
dementia [40], and the privileged information approach cannot learn information which is
not there to learn.

The cognitive data is only boostable if there is information which can be learned in the
A matrix’s cross term interaction of MMSE with sex, age or education, the latter being
the most likely candidate. This information was not learned, and it may not exist. The
MMSE has been shown to be a poor predictor of decline/conversion compared to other
cognitive test e.g. the SAGE [45]. The best hope for this to be successful was a cross-term
interaction between education and possibly age or sex, however whether these are linked
to risk of Alzheimer’s is speculative [41].

The regions extracted by the PLS, as shown in Figures 2-4, validate the method well.
Expected features, namely the temporal lobes [19], visual cortex [42], brain stem [43] and
dorsolateral prefrontal cortex [44] are found. Beyond that, it is hard to speculate what
is noise and what is information. To build a robust mask, an enormous population may
be helpful. One disadvantage with the PLS is that it could pull out significantly different
features which each classify just as well, or explain just as much variance in the Y space.
While the maps allow for a sanity check, they are likely infinite combinations of voxels
which are just as predictive.

7 Conclusion

I have attempted to boost the predictive use of the MMSE test for MCI patients at
risk of converting to AD using structural MRI data as privileged information. This was
unsuccessful, compared to the Alahmadi [8] study which used fMRI on cognitive skill tests
including working memory, cognitive inhibition and attentional skills. It is likely that the
cognitive data used was far superior to the MMSE, which is a single score from 1-30. By
failing to change the cognitive data metric using structural data, I provide evidence that
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the MMSE is a very poor test to indicate the risk of AD conversion. This backs up the
literature which has shown that other tests such as the SAGE are superior predictors [45].

Using structural scans, PLS regression and k-fold cross-validation I have been able to
predict with a mean classification accuracy of 67.2% whether a patient diagnosed with
MCT will progress to AD within 5-8 years. This is significantly better than the MMSE
score, which achieved just 52.3%. Although the structural data did not boost the cognitive
accuracy using a privileged information theoretic metric learning approach, it could prove
useful in it’s own right if validated out of sample. Structural MRI scans are becoming
increasingly easy to obtain, and the method outlined in this project can be applied to
data from a 1.5T or 3T scanner.

I have picked out structural features for people with the same clinical diagnosis of MCI
which may be indicative of progression to AD within 5-8 years. The next step is to test
if these features can predict decline out of sample, or at least to test using the same
methodology whether another sample with longitudinal data produces similar maps with
the same features of significance in the gray and white matter.

I have provided evidence that EMCI and LMCI are inappropriate labels, which has very
recently been addressed by Jack et al., 2018 [7].

The next stage for this work would be to attempt to boost the structural data using
the memory slope as the privileged information. A nice idea could be to take a step
back and use the memory slope as the Y matrix in the PLS regression, hence moving
completely away from the clinical diagnosis and relying on a highly predictive metric, and
the features it extracts in the structural data. The issue is that this is harder to classify
as the problem is now framed as continuous rather than discrete. This makes more sense
in terms of disease progression, but will require the mathematics of ordinal classification
problem, potentially becoming harder to validate.

Another class for which there was insufficient data in the ADNI to address is the HC-C
(healthy control, converting to Alzheimer’s disease). It would be a more difficult task to
attempt to classify a healthy person’s risk of developing AD, and would require longitu-
dinal data taken over many years. It is clear that the future of this field will require even
more extensive longitudinal studies than the ADNI, tracking people over say 20 years
from healthy to healthy/sick, and hopefully this project has provided evidence that this
would be a worthwhile investment, to enable the development of more advanced predictive
models.
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9 Appendices

The main script is included below: mainscript.m. This is my own work. In addition,
a USB stick was provided which contained the function train_gmlvq_cv.m, which was
adapted alongside the script privscript.m from the library of Joseph Giorgio. The VBM
code I worked on for the pre-processing was also included.

The statistical brain maps were made using the software MRIcron, and the other graphs
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were made in MATLAB.

load (’T:\Users\jjgb0\Jan\ADNI\multiclass\classdata6.mat’);
%% (1) Import nii Files
rids = classdata5(:,2);

for subject_id = 1:length(rids); Jrun time 10-20mins
atemp = num2str (rids(subject_id));

%white matter

% choldl = dir([’T:\Users\jjg50\Jan\ADNI\rc2300\smwrc2’, atemp, ’*’]);

% cl = [’T:\Users\jjgb0\Jan\ADNI\rc2300\’, choldl.name,’’];

% in_aal=load_untouch_nii(cl)

% gm_image_expl{subject_id}=double(in_aal.img) .*in_aal.hdr.dime.scl_slope;

% vector_rawl (subject_id,:) = reshape(imresize3(gm_image_expl{l,subject_id},0.8)

,[1,(97%x116%97)1) ;
% gm_image_expl = [1;

%grey matter

choldl = dir ([’T:\Users\jjg50\Jan\ADNI\rc1300\smwrcl’, atemp, ’*’]1);

cl = [’T:\Users\jjg50\Jan\ADNI\rc1300\’, choldl.name,’’];
in_aal=load_untouch_nii(cl)

gm_image_expl{subject_id}=double(in_aal.img) .*in_aal.hdr.dime.scl_slope;

vector_rawl (subject_id,:) = reshape(imresize3(gm_image_expl{1l,subject_id},0.8)

,[1,(97%x116%97)1);
gm_image_expl = [];
end

%% (2) Resize nii voxels

mask = load_untouch_nii(’T:\Users\jjg50\Jan\ADNI\MASK\wmmaskgood.nii’); %< WM

mask_img = double (mask.img);

mask_img2 = imresize3(mask_img, 0.8);

maskgmvector2 = reshape(mask_img2, [1, (97*116%97)]);

maskl = load_untouch_nii(’T:\Users\jjg50\Jan\ADNI\MASK\mask.nii’);
mask_imgl = double(maskl.img) ;

mask_img21 = imresize3(mask_imgl, 0.8);

maskgmvector21l = reshape(mask_img21, [1, (97%116%97)1);

maskgmvector = maskgmvector2l;
vector_raw = vector_rawl;

%% (3) Pack
positions = find(maskgmvector2);
for i = 1:length(rids)

%< GM

condensed_vec_raw(i,:) = vector_raw(i,positions); %< raw vector*mask

i
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(4) Crossfold/Bootstrap PLS Regression

assl = classdata5(:,1);

ass = classl;

clalle find(class==1);

c2alle = find(class==2);

c3alle = find(class==3);

c4alle = find(class==4);

cballe = find(class==5);
min_class=min([length(clalle),length(c2alle),length(c3alle),length(c4alle),length(

cballe)]);

clall = clalle(randperm(length(clalle)));
c2all = c2alle(randperm(length(c2alle)));
c3all = c3alle(randperm(length(c3alle)));
c4all = c4alle(randperm(length(c4alle)));
cball = cballe(randperm(length(c4alle)));

cstayall = [c2all(1:42);c4all(1:41)];
c24all = [c3all(1:33);c5all(1:50)1;

r bS=1:10 %< bS = crossfold % run time = long
% SPLIT TRAINING AND TEST
training = [cstayall(1:83);c24al11(1:83)1;
st=[cstayall ((8*bS-7) :8%bS);c24all ((8*bS-7):8*xbS)];7 training = setdiff (
training, test);
if sum(ismember (test,training)) =0
error (’Test Has Training Data’)
end

% TRAINING ONLY REFER TO *trainingx
training_classstay2=training(class(training)==2);
training_classstay4=training(class(training)==4);

training_class2=training(class(training)==2);
training_class3=training(class(training)==3);
training_class4=training(class(training)==5);
training_classstay = [training_classstay2;training_classstay4];
training_class24 = [training_class2;training_class4];

min_class=min([length(training_class24),length(training_classstay)]);

rlye = datasample(training_class24 ,min_class,’Replace’,false);
r2ye = datasample(training_classstay,min_class,’Replace’,false;
pmatyee (bS,:) = [rlye;r2yel;

riye = [];

r2ye = [];

gmvecye = condensed_vec_raw ((pmatyee(bS,:)),:);

forl = class(pmatyee(bS,:));

forl(forl==5) = 3;

forl(forl==4) = 2;

[XL,YL,XS,YS,BETA,PCTVAR ,MSE, STATS] = plsregress(gmvecye,zscore(forl) ,3);
% recreate the score for ALL training subjects as a reference

proto=condensed_vec_raw*STATS.W;
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99 parfor j = 1:1000

100 rly = datasample(training_class24 ,min_class,’Replace’,true);
101 r2y = datasample(training_classstay,min_class,’Replace’,true);
102 pmaty (j,:) = [riy;r2yl;

103 riy = [1;

104 r2y = [1;

105 gmvecy = condensed_vec_raw ((pmaty(j,:)),:);

106 forlh = class(pmaty(j,:));

107 forih(forlh==5) = 3;

108 forih(forlh==4) = 2;

109 [XL,YL,XS,YS,BETA,PCTVAR ,MSE,STATS] =plsregress (gmvecy,zscore(forih) ,3);
110 statswmatrix_new{bS,j} = STATS.W;

111 gmvecy = [];

112

113 end

114 %pmaty_bs{bS} = pmaty;

115 %pmaty = [];

116 % for j = 1:1000

117 % flipped_cp(1:10)=0;

118 7 for bsDim=1:10

119 7% for cProto=1:10

120 % temp=corrcoef (bs_scores{j}(:,bsDim) ,proto(training, cProto));
121 9% compare_val (cProto)=temp (1,2);

122 7 end

123 7% % check for absoulte correspondence

124 % [",most_similar (bsDim)]=max (abs (compare_val));

125 % corr_val(bsDim)=compare_val (most_similar (bsDim)) ;
126 % check for axis flip of closest dimension

127 %

128 if (corr_val(bsDim) <0)

129 7 flipped_cp(bsDim)=-most_similar (bsDim);

130 % end

131 7% end

132 7 %stack results for the bootstrap

133 % boot_strap_order2{bS}(j,1:10)=most_similar;

134 7 boot_strap_fliped2{bS}(j,1:10)=flipped_cp;

135 % boot_strap_correspondence2{bS}(j,1:10)=corr_val;

136 % end

137 bS

138 end

139

140

141

142 %% (5) Variance Normalise and Take Mean from PLS regressions from samples (for each
crossfold)

143

144 for bS = 1:10

145 for component = 1:3

146 for sample = 1:1000

147 hold = std(statswmatrix_new{bS,sample}(:,component));

148 for nVox=1:length(statswmatrix_new{bS, component})

149 % statswmatrix{component}(j,:) = transpose(my{j}.W(:,component));

150 varsamplee{bS, sample}(component ,nVox) = statswmatrix_new{bS,samplel}(nVox,
component) ./hold;

151 end

152 sumvarsamplee{bS}(1:3,1:length(statswmatrix_new{bS,componentl}))=0;

153 %~run this line if it doesnt work
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sumvarsamplee{bS}(component ,:) = sumvarsamplee{bS}(component,:) + varsamplee{
bS, samplel}(component,:);
varsamplee = [];
end
meanvarsamplee{bS}(component ,:) = sumvarsamplee{bS}(component,:)./1000;

end
bS %Since this runs slow, output bS to check running correctly

end

%% (6) Make Mask of Most ’Significant’ Voxels. View Features as nii.
for i = 1:10

for j = 1:10
meanacc{i,j}(1:3, 1:3) = zeros;

end

end
% for loop_over = 1:10

for cf = 1:10
for component

1:3

var_norm = meanvarsamplee{l,cf}(component,:);
1d3_thresh=zeros (size (maskgmvector));
1d8=zeros (size (maskgmvector)) ;

1d8(positions) = var_norm;

1d9 = zeros(size(maskgmvector));

%1d9 (positions) = meansamplee{cf,component};
1d9(positions) = var_norm;

lpct=prctile(var_norm,2);
hpct=prctile(var_norm, (100-2));

% make binary mask of voxels that are significant
1d3_thresh(1d8<=1lpct)=1;
1d3_thresh (1d8>=hpct)=1;

% mask out non significant weights
1d3_high_low_map=1d9.*1d3_thresh;
1d4 = 1d3_high_low_map;
1d2 = reshape(1d4,[97,116,97]1);
reconstructed = make_nii(1d2); %% Uncomment to view nii
view_nii(reconstructed); %% Uncomment to view nii

b h

re_create_weight=1d3_high_low_map(positions); 7 use only the significant weights

to recreate the score per subject
for i=1:1length(class)

score_sub_trialbgm{cf,1}(i, component)=re_create_weight*condensed_vec_raw(i

,:)?; J%i<check if wm/gm
end

end

end

% ’score_sub_trialgm/wm’ is to be fed to classifer, add the required components’

% scores to data2 in columns 7:end.

%% (7) Feed to GMLVQ Classifer
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cd(’T:\Users\jjgb0\Jan\classification_files’);

% for class_loop = 1:10

%Set learning parameters

alpha =

0.0005%8;

eta=alpha/10;

epochs
decay =

1000;
0.00;

normalize = 0;

% for param_loopl
% for param_loop?2

for bS

1:10

training = [cstayall(1:83);c24al1l1(1:83)1];

test=[cstayall ((8*bS-7) :8%bS);c24all ((8%bS-7) :8%bS
training = setdiff (training, test);

htest

data2zi = zscore([score_sub_trialbwm{bS,1}(:,1) score_sub_trialbgm{bS,1}(:,1:3)1);
data2z = [classdata5(:,1) classdatab(:,3:6) data2zil;

Data_allT=data2z(test ,2:5) ;

labelT=data2z (test ,1);

%training

Data_all=[data2z(training ,1) data2z(training,2:5)];
Data_all(Data_all(:,1)==5,1)=3;
Data_all(Data_all(:,1)==4,1)=2;
label=data2z (training,1);

label (label==5)=3;

label (label==4)=2;
classl=find(label==2);
class2=find(label==3);

test_data = [labelT,Data_allT];
test_data(test_data(:,1)==5)=3;
test_data(test_data(:,1)==4)=2;

for

train_loop=1:6

rng(’default’)

rng shuffle
resamplecl=randsample (find (Data_all(:,1)==2) ,round(length(class1)*0.8),0);
resamplec2=randsample (find(Data_all(:,1)==3) ,round(length(class1)*0.8) ,0);

resample_ind=[resamplecl;resamplec2];

Data=Data_all(resample_ind ,2:end);
Label=label (resample_ind,:);

result=train_gmlvq_cv ([],Data,Label,alpha,eta,l,’n_epoch’,epochs,’n_proto_class’
,[1,1], test_data’,test_data,’decay_factor’,decay,’init’,1, matrix_start’,1);

test_this_loop(bS,train_loop)=result.accuracy_test(end);

acc(bS,train_loop) = l-result.accuracy_test(end) Y%outputs classification accuracy
train_this_loop_er (bS,train_loop)=result.accuracy_training(end);
test_res(:,train_loop)=result.xx;

omega_mat2{bS,train_loop}=result.omega;

healthy_indexl = find(class(test) ==2 );
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end

healthy_index2 = find(class(test) ==4 );

mci_index1l = find(class(test) ==3 );

mci_index2 = find(class(test) ==5 );

sensitivity(bS,train_loop) = (length(find(result.xx(mci_index1)==3))+length(find(
result.xx(mci_index2)==3)))/(length(mci_indexl)+length(mci_index2))

specificity(bS,train_loop) = (length(find(result.xx(healthy_index1)==2))+length(
find(result.xx(healthy_index2)==2)))/(length(healthy_index1)+length(
healthy_index2))

end

test_outer (:,bS)=round(mean(test_res ,2));

accuracy_outter (bS)=sum((round (mean(test_res ,2))-test_data(:,1))==0)/length(
test_data);

train_acc=mean(mean(train_this_loop_er));

test_acc=mean(accuracy_outter);

mean_test_acc=mean(mean(test_this_loop));

meanacc{loop_over,class_loopl}(param_loopl, param_loop2) = mean(mean(acc));

acc
end
end
end

end

= [1;

% Used in hyperparameter fixing only

for

end

i =1:10
for j = 1:10
meanmat (i, j) = max(max(meanacc{i,j}))

end
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