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Abstract

Using Python, the equations of motion for a Sun, Jupiter and aster-
oid system were solved numerically with an adaptive Runge-Kutta
technique. It was then shown that asteroids at the ’Greek’ and *Tro-
jan’ Lagrange points remained stable over many orbits of Jupiter
around the Sun. Next, it was shown that varying the initial posi-
tions of the asteroids slightly could still result in stable orbits over
thousands of years, and a plot of the initial positions leading to
stable orbits was made. The program was then run for different
planetary masses, and for a range of stable orbits the range of wan-
der was found to vary as M%°. For very small or large masses,
outside of a few orders of magnitude of the mass of Jupiter, no
particular relationship was found.

1 Introduction

The problem of three masses interacting via the classical laws of gravitation and Newto-
nian mechanics is commonly referred to as the three-body problem. Since in this problem
the mass of the asteroid is assumed negligible, the Sun-Jupiter-asteroid system can be
reduced to a circularly restricted three-body problem.[!) In a rotating reference frame for
which the two massive bodies are stationary, the asteroid can be seen to remain station-
ary, orbit, or possibly escape the system. We aim to find the equations of motion for the
asteroid and then solve numerically using the Runge-Kutta technique.

When a small object is placed at one of the 5 Lagrangian points in a non-rotating frame,
the force of gravity from the two massive bodies on the object is equal to the centripetal
force required to orbit with them. The Greek and Trojan Lagrange points lie 7/3 radians
from each mass with respect to the Sun-Jupiter axis, each forming an equilateral triangle
with the asteroid at the third vertex (see Figure 1). These two positions are stable, so
objects can orbit them in the rotating frame.

Lagrange points are of interest due to their potential use in space exploration and habi-
tation. Satellites have been placed at the on-axis Lagrange points (known as L1, L2
and L3). NASA have considered 'parking’ spaceships at the Lagrange point beyond the



Moon (L2) in an Earth-Moon system, in order to remotely operate robots on the lunar
far side.l?l Habitations at the Greek and Trojan positions (L4 and L5) could be employed
in the Earth-Sun system as waypoints in space travel.l®!

The aim of this project is to present the results of the program written to solve the
equations of motion. It starts off by testing stable orbits in the Sun-Jupiter-asteroid sys-
tem, then moves on to varying the initial conditions around the points of stability. Finally
a relationship is derived linking the range of wander and planetary mass. The theoretical
background is outlined in Section 2. Section 3 gives a summary of the computational
methods used, while Section 4 details the implementation. Section 5 includes the discus-
sion of results, errors and analysis. The overall conclusions of the project are presented
in Section 6, and the code is included in the Appendix (Section 7).
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Figure 1: The positions of the 5 Lagrange Points in the Sun-Jupiter system (not to scale).
This image is my own and was created using inkscape.



2 Theoretical Background

2.1 Units and Constants

Solar units are used in this problem, with M, taken to be unity, M; = 0.001M,. One
year is taken to be unity for time, t. Unit distance is one astronomical unit (AU), and

the Sun-Jupiter separation is 5.2 AU. Hence the gravitational constant is G = 472, As
previously stated, the asteroid mass is taken as negligible so it does not change the motion
of the two-body massive system.

2.2 The Equations of Motion

Figure 1 shows the general set-up but it is easier to find the equations of motion for the
asteroid by analysing the system with respect to a frame rotating about the centre of
mass of the two massive bodies, shown in Figure 2. It is assumed that the radial distance
R = |rj] + |rs| between Jupiter and the Sun is constant in time, so the orbit is taken
to be completely circular. This is an acceptable approximation as the observed orbital

eccentricity of Jupiter is e = 0.048 ~ 0.4
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Figure 2: The co-ordinates used in the rotating frame. Note the centre of mass/origin is
not a Lagrange point. Also not to scale. This image is my own and was created using
inkscape.



It is then simple to derive the x and y components of acceleration, which are the equations
of motion, equations (1) and (2). r is the position of the asteroid from the centre of
mass. The angular velocity of the frame is given by w = /G(M, + M;)/R?. G is the
gravitational constant, M, and M; are the masses of the Sun and Jupiter respectively.

Taking: rs = (0, %) and rg = (0, —M&ﬁj). We have:
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The equations of motion are found by considering the components of the gravitational
force from each body, in addition to the two fictitious forces - the centrifugal force oc rw?
and the Coriolis force oc wr.

3 Computational Analysis

3.1 Analysis of computational aspects

The equations of motion are solved with a scipy.integrate.ode integrator. The type of
integrator can be selected, and a real-valued variable-coefficient ODE solver was tested
for consistency alongside 4th and 8th order Runge-Kutta methods. The respective com-
putational errors of the 4th and 8th order Runge-Kutta methods can be seen in Figures
3 and 4 for orbits on the Trojan Lagrange point. A while loop runs the integration for
a specified time and over a specified step size to output the path of the asteroid. The
respective errors for each regime are presented in Table 1. Throughout the project, unless
otherwise stated, the 8th order Runge-Kutta method was adopted as the absolute error
was smaller than that of the 4th order method. Although the real-valued ODE solver had
a lower error, this project specified the use of a Runge-Kutta method. It was useful to be
able to check everything was working, however.

H Integrator Absolute error | Reference H
Real-valued ODE solver ~ 10712 "vode’
4th Order Runge-Kutta ~ 1071 "dopri5’
8th Order Runge-Kutta ~ 1071 "dop853’

Table 1: Computational erros for each integration regime for a 5000 year orbit about the
Trojan Lagrange point. Errors given in AU

3.2 Range of Wander

Still working in the rotating frame, the range of wander was calculated by taking the
largest and smallest values of the x and y components of the orbit and taking an average.
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For a bound orbit this corresponds to good estimate of the average of the leading and
trailing groups. When the orbit is unbound this range of wander calculation is not very
useful and will be related primarily to how long the program has been run for. Hence
to analyse this properly we need to be able to compute the initials positions around the
Lagrange points which lead to stable orbits.

3.3 Conditions for a Stable Bound Orbit

We define a function which checks if the orbit is bound or unbound. It is simply an ’if’
statement which checks how far away from the centre of the system the asteroid travels.
If the asteroid escapes from the system i.e. if the x or y values are greater or less than a
certain cutoff point, then the function returns a zero value. Altering these cutoff values
arbitrarily did not change the results very much because unbound orbits would quickly
escape to infinity. A section of the code produces a plot of the stable initial conditions by
looping over many thousands of initial values of x and y.

4 Implementation

The specifics of the code should hopefully be clear enough from the annotations included
in the .py script. See the Appendix (Section 7) for the full program listing.

4.1 Approach to Implementing the Algorithms

Once the adaptive Runge-Kutta method lines of code used to solve the equations of mo-
tion were written and shown to work, the rest of the project followed reasonably simply.
The integrator was included in a series of loops to produce the plots required to solve each
specific part of the problem, and the .append command was used extensively to create the
arrays of data to be plotted. Pylab was used to create the plots, and these are included
in the single script.

When running the script, I recommend not running ’part 2’ and "part 3’ together, and to
ensure the time specified is appropriate to which plot is trying to be generated to ensure
computation times are not excessive.

4.2 Emnergy Calculation

In order to test the workings of the code, it is possible to plot the energy evolution over
time for an orbit. The conserved quantity U is given by:
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4.3 Performance

Most of the program was very quick to execute, and the errors on the orbits were very
low as shown in the previous sections. However, looping over thousands of initial asteroid



positions, each time solving the equations of motion, proved sluggish and, depending on
the time parameter chosen, took anywhere between 1 — 30 minutes. If we were to consider
errors for this part of the calculation, they would be significantly higher as we can only
consider a finite number of initial conditions, when there are theoretically an infinite
number of positions which will lead to bound orbits. It was found that no particular
advantages in terms of the results seen were gained for choosing the conditions which
resulted in longer computation times.

5 Results and Analysis
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Figure 3: The path of the orbit about the Trojan Lagrange point for t = 5000 years using
the 4th Order Runge-Kutta integration method.



1e-11  Distance from the Trojan Lagrange Point
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Figure 4: The path of the orbit about the Trojan Lagrange point for t = 5000 years using
the 8th Order Runge-Kutta integration method. Initial conditions (Ziagrange; Yiagrange)
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Figure 5: The path of the orbit about the Trojan Lagrange point for t = 5000 years.
Initial conditions (Zjagrange + 0-01, Yiagrange + 0.01)



1e—11  Change in Energy against time for Stable Orbit
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Figure 6: The change in Energy U (as defined in Equation (3)) with time for 1000 years
for the stable orbit in Figure 5.
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Figure 7: The path of an unstable orbit about the Trojan Lagrange point for t = 500
years. Initial conditions (Zjagrange + 2.00, Yiagrange + 2.00).



The Initial Positions Leading to Stable Orbits
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Figure 8: A plot of the initial positions in our samples of x and y co-ordinates leading to
bound orbits for the Sun-Jupiter system.
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Figure 9: A plot of an orbit with the initial conditions (5.25,0) as found by observing the
extremal point in Figure 8. Notice how its shape and range of wander is comparable to
the shape of stable initial conditions in Figure 8.



Plot of Mass against Range of Wander in Log(2)
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Figure 10: Range of Wander against Mass, M for 0.001 < M < 0.003. Initial conditions
(1.012Z1agranges 1-01¥1agrange)- 1-€. a small radial displacement from the Lagrange point.
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Figure 11: Range of Wander against Mass, M; for 0.001 < M; < 0.003. This time the
initial conditions are (0.99Z1agrange, 0-99Ylagrange)-
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Distance from the Trojan Lagrange Point
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Figure 12: Distance from the Trojan Lagrange Point for M; = 0.001 (blue) and M; =
0.005 (orange), qualitatively agreeing with the relationship shown in Figures 7 and 8.

5.1 Preliminary Testing

The first thing to test was if the integration of the equations of motion produced sensible
solutions. The most obvious test was for an asteroid starting at a Lagrange point. Figures
3 and 4 show the distance from the Trojan Lagrange point for an orbit over 5000 years
(many hundred orbits of the Sun-Jupiter sytem). As expected, only small computational
error deviations from the starting points are observed.

Next, the initial starting position were varied around the Lagrange point, and stable
orbits were still observed. An example is shown in Figure 5. An example of an unstable
orbit which was started significantly further away from the a Lagrange point is shown in
Figure 7.

Finally, just to ensure everything was in order, the change in the constant U (defined
by Equation (3)) was plotted against time and the small deviation shown in Figure 6 is
within the order of the expected computational error.

Many different initial conditions were experimented with and the findings above were
found to hold for all the positions tested. In addition, the initial velocities were changed
from zero and both bound and unbound orbits were observed. At this point we can be
confident that the basic code to solve the equations of motion and plot paths of orbits
works.
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5.2 Stable Initial Positions

Moving onto Part 2 of the code, the plot of stable initial positions for an asteroid placed
in the Sun-Jupiter system is shown in Figure 8. This plot is useful in allowing us to plot
stable orbits in interesting positions, and derive their range of wander for example. An
example of an orbit which was at the extremal x value of the plot in Figure 8 is shown in
Figure 9.

5.3 Range of Wander

The range of wander for a small initial radial displacement of an asteroid for a range of
masses is shown in Figures 10 and 11. Plotted on a logy scale the relationship is linear
for masses of the ’Jupiter’ planet between 0.001Mg and 0.003Mg, suggesting a M %5
relationship. For higher masses at this initial displacement from the Lagrange point, as
well as for very tiny masses, the relationship did not hold as the orbits became unbound.
This qualitative observation is in line with what might be expected, and agrees with

observations made by Fleming and Hamilton.”!

5.4 Analysis of Results

As the mass of the Jupiter planet is increased, it has been shown that the range of wander
for a small radial displacement falls off as approximately M % for masses within roughly
an order of magnitude of M;. This is also seen by observing the orbits (Figure 12). How-
ever, as the mass is increased significantly beyond 0.001M/,, the stability of the orbits
start to decrease and many become unbound, making deriving any kind of quantitive
relationship very difficult. Very small masses also do no obey the derived relationship.
Neither of these are surprising results as one can imagine the stability of the orbits falling
away at extremal masses.

Also interesting is the comparison of Figures 8 and 9 which adopt quite similar shapes
and scales, with the range of wander of the orbit covering the same kind of regions as the
stable initial conditions. This is not surprising and is easy to imagine in the low orbit
velocity regime.

6 Conclusion

It has been shown that the adaptive Runge-Kutta progam written in Python to solve the
equations of motion is effective for modelling the orbits of asteroids placed at and around
the stable Lagrange points in the Sun-Jupiter system, and other systems of comparable
masses. It has been demonstrated that asteroids will stay fixed at Lagrange points over
many orbits of Jupiter around the Sun, and that asteroids can follow the paths of bound
orbits when the initial positions are varied. A plot of the stable initial conditions has
been made, and a relationship established between the mass of the Jupiter planet and
the range of wander, which falls off as M=% for masses comparable to the mass of Jupiter.

Potential improvements that could be made to this investigation include optimising the
code, especially to reduce computation time for deriving stable initial conditions, which
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could allow for a more thorough investigation into the range of wander against mass cal-
culation (i.e. by looping over a third dimension, M to produce a 3-dimensional landscape
plot of stable conditions), as it is possible here that the M %% relationship holds only in
our very limited situations for a small range of masses and a small radial displacement
from the Lagrange point. In addition, varying the initial velocity of the asteroid, which
have been kept as zero for this investigation, could have interesting applications for ex-
ample in gravitational slingshotting. Obvious improvements such as making the model
more realistic by considering the mass of the asteroids or the eccentricity of Jupiter’s
orbit could also be implemented, albeit at the cost of more complicated computational
elements, and potentially a longer run time.
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SANEEC I

7 Appendix

import numpy as np

from scipy import integrate
from scipy.integrate import ode
import matplotlib.pyplot as plt
from pylab import genfromtxt
import pylab

import matplotlib.axes as ax

# PART 1: defining values and solving for one asteroid orbit

y = ly,dy/dx]
= 4x((np.pi)**2)
s =1
-j =

= 5.
omega = (2*np.pi*np.sqrt(m_s + m_j))/pow(R,1.5)
h = [G, m_s, m_j, R, omegal] # parameters

.001

N O
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def derivatives2(t,y,h):
rj = h[1]1*h([3]/(h[1]1+h[2]) # distance from jupiter to centre of mass

rs = h[2]*h([3]/(h[1]+h[2]) # distance from sun to centre of mass
ra = np.sqrt(y[0]**2+(y[1]-rj)**2) # asteroid-jupiter distance
rb = np.sqrt(y[0]**2+(y[1]+rs)**2) # asteroid-sun distance

# Equations of Motion

f =[y[2], y[3], -h[0]*h[2]*y[0]/pow(ra,3)-h[0]*h[1]*y[0]/pow(rb,3) +
y[0]*pow(h[4],2)+2*%h [4] *y[3], -h[0]*h[2]*(y[1]-rj)/pow(ra,
3)-h[0]*h[1]*(y[1]+rs) /pow(rb, 3) + y[1lxpow(h[4],2) - 2xh[4]*y[2]]

return f

x_lagrange=h[3]*np.sin(np.pi/3) # x coordinate of Trojan Lagrange point

#x_lagrange=-h[3]*np.sin(np.pi/3) # x coordinate of Greek Lagrange point

y_lagrange=(h[3]*np.cos(np.pi/3)) -(h[3]1*h[2])/(h[1]+h[2]) # y coordinate of
Trojan/Greek Lagrange point

yO = [x_lagrange+ 0.01, y_lagrange +0.01, 0, 0] # yO = [x, y, vel(x), vel(y)]

time = 100

steps = 100

t = np.linspace(0,time,steps)

dt = time/steps

sol = np.array([np.array(y0)])

# method = "vode" # Real-valued Variable-coefficient Ordinary Differential
Equation solver

# method = "doprib5" # Runge-Kutta Method of Order 4

method = "dop853" # Runge-Kutta Method of Order 8

integrator = integrate.ode(derivatives2).set_integrator (method)

integrator.set_initial_value(y0,0.0)

integrator.set_f_params((h))

while integrator.successful() and integrator.t<time:
sol = np.append(sol, [integrator.integrate(integrator.t+dt)],axis=0)

#pylab.plot(sol[:,0]-x_lagrange,sol[:,1]-y_lagrange)
#pylab.title("Distance from the Trojan Lagrange Point")
#pylab.xlabel("x coordinate")

#pylab.ylabel("y coordinate")

def U(i):
rj=h[1]1*h[3]/(h[1]+h[2])
rs=h[2]*h[3]/(h[1]+h[2])
ra=np.sqrt(pow(sol[i,0],2)+pow((sol[i,1]-rj),2))
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rb=np.sqrt(pow(sol[i,0],2)+pow((sol[i,1]+rs),2))

return
0.5%pow(sol[i,2],2)+0.5*pow(s0l[i,3],2)-0.5*pow((h[4]*s01[1i,0]),2)-0.5%pow((h[4]*s0ol[i
- h[0]*h[2]/ra - h[0]*h[1]/rb

enrgy = []

for i in range(0,steps):
enrgy.append (U(i))

#pylab.plot(enrgy - enrgy[0])

#pylab.title("Change in Energy, U against time for Stable Orbit")
#pylab.xlabel("Time, t")

#pylab.ylabel("Energy, U")

# PART 2: Finding the Initial Conditions which produced Bound Orbits
# This is the slowest part of the progam and I would reccommend running for
time<100 otherwise computation times can be very long

def condition(y,x):
z=1
if (np.any(y > 10) or np.any(y < -10) or np.any(x > 10) or np.any(x < 0)):
z+=-1
return z

ite = []
ite2 = []
11 =[]
12 = []
13 =11

for k in range(0,100):

for 1 in range(0,100):
y3 = [(0.5+k/20), (-6+0.12x1), 0, 0]
s0l3 = np.array([np.array(y3)])
# method = "vode"
# method = "doprib"
method = "dop853"
integrator = integrate.ode(derivatives2).set_integrator (method)
integrator.set_initial_value(y3,0.0)
integrator.set_f_params((h))
while integrator.successful() and integrator.t<time:
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for p
x =
y =
11.
12.
13.
xj
3

pylab
pylab.
pylab.
pylab.
pylab.

so0l3 =
np.append(sol3, [integrator.integrate(integrator.t+dt)],axis=0)
ite.append(s0l3)
ite2.append(y3)
in range (0, (100%100)):
ite[p][:,0]
itelpl [:,1]
append (condition(y,x))
append (ite2[p] [0])
append (ite2[p] [1])
np.multiply(11,12)
np.multiply(11,13)

.plot(xj,yj, ’xr’)

title("The Initial Positions Leading to Stable Orbits")
xlabel("x coordinate")

ylabel("y coordinate")

x1im([1,5.51)

# PART 3: Solving for a range of masses

row =

(]

massJ= []

for i
h2

in range(1,40):
= [G, m_s, 0.00005*%i +0.001, R, (2*np.pi*np.sqrt(m_s +
0.00005%1))/pow(R,1.5)]

x_lagrange2=h2[3]*np.sin(np.pi/3) # x coordinate of Lagrange point
y_lagrange2=(h2[3]*np.cos(np.pi/3)) - h2[3]1*(h2[2])/(h2[1]1+h2[2]) # y

coordinate of Lagrange point

y20 = [1.01*x_lagrange2,1.01*y_lagrange2,0,0]
t = np.linspace(0,time,steps)

dt

= time/steps

sol2 = np.array([np.array(y20)])

# method

Ilvode ]

# method = "doprib"

method = "dop853"

integrator = integrate.ode(derivatives2).set_integrator (method)
integrator.set_initial_value(y20,0.0)
integrator.set_f_params((h2))

while integrator.successful() and integrator.t<time:

so0l2 = np.append(sol2, [integrator.integrate(integrator.t+dt)],axis=0)

16



loop = (np.sqrt((max(sol2[:,0]) - min(so0l2[:,0]))**2) +
np.sqrt((max(sol2[:,1]) - min(sol2[:,1]))*%2))*0.5

row.append(loop)

massJ.append (h2[2])

figl,axl = plt.subplots()

axl.loglog(massJ, row, ’xr’, basex=2)

axl.set_xscale(’log’)

pylab.title("Plot of Mass against Range of Wander in Log(2)")
pylab.xlabel("log_2(Mass)")

pylab.ylabel("Range of wander")
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